Gareth Jones (JLB) - Computing (SAH)

Computing: HexToDec
1. The task

A decimal number (base 10) can be written as a sum of powers of ten, for example, 3241 can
be represented as

3x103+2x102+4x10"+ 1 x100.

A base 16 (hexadecimal) number has the following digits

0123456789ABCDEF (where A=10, B=11 ..)

Similarly 2FApase 16 Can be represented as

2x162+15x 16" + 10 x 160 = 762pase 10

Write a function to convert hexadecimal numbers to decimal numbers.

Hints:
Test it using the built-in procedure IntToHex.

Extension
Show how to place it (a) where it can be accessed by one event handler only, and (b) where it
can be accessed by any event handler in the current unit.

2. Design and development

Initial design: My first design consisted of two text : I """"""

boxes and a button. The user entered the - -
hexadecimal value into the first textbox, pressed Lo Make decimal | :
the convert button and the decimal value was : | .
returned.

Design development: Using a button made the
¥ HexToDec program _|I:I| Xl
1" B interface slower to use. Instead I changed the

time when the procedure was executed,
instead of on the click of the button I assigned
this to the OnKeyUp event in the text box. I
added labels to the program to aid the user. I
included the functionality to change the string
all to upper case (i.e. a to A, b to B...) before processing so the user can enter either upper
case, lower case or a combination of characters.

Final design: I added a button that displays =10 =l
instructions into a memo box that instruct the R
user on how to use the program to complete my : Click here for Instructions |

design. I changed the default value of the
hexadecimal entry to a sample entry so that if the
user did not change the text the program would
compile correctly. I also added a validation
routine to check that the user had entered a valid
string into the textbox. As text entered in the

decimal box serves no functionality I changed the - Enter hex code here: - - - [AECDE
design of my program to display the result in a Dt
label component instead of a textbox. . Dec code displayed here: - - - - - oo

Pseudo-code:

Defining the function HexToDec:

DefineFunction HexToDec (In:String, Str;Out:Integer,Result)
DefineVariables

i, j, TermPower areof Integer
start

Gareth Jones (JLB) - Computing (SAH)

TermPower € 1

for j € 1 to Length(Str) - 1
TermPower € TermPower * 16
end

Result € 0
Str € MakeAllUpperCase (Str)
for I € 1 to Length(Str)
case Str[i]
1..9 2 Result € Result + Str[i] * TermPower
A..F = Result € Result + (ASCII(Str[i])-55) * TermPower
* = ShowErrorMessage (Character Str[i] is invalid hexadecimal)
TermPower € TermPower divideby 16
end

OnKeyUp Procedure for txtEntry, the textbox in which the hexadecimal value is entered:

DefineProcedure txtEntry:0nKeyUp
start

lblResult € HexToDec (txtEntry)
end

OnClick Procedure for btnInstructions

DefineProcedure btnInstructions.OnClick
start
memobox.addlines (Enter a hexadecimal value into the first text box and the
decimal value will appear in the second text box.)
end

Data dictionary

Identifier Type Formatting and reasoning
i, Integer Loop counter
TermPower Integer Power of 16 that the term is to be multiplied

by. It would be possible to create the loop that
assigns the value to TermPower initially in its
own function, however I did not see this as
necessary as the function is only used once.

Str String (of Hex. values) String given to function, read from the
txtEntry textbox.

Result String (of Dec. values) Resultant value printed to the txtResult
textbox.

3. Problems

I encountered a variety of problems whilst creating the program, which I have documented
below.

Most of the difficulties I had were in my initial approach to the problem. The pseudo-code I
initially created for the function HexToDec did not take into account that a numeric value meant
a two-digit multiplier would need to be created. I then re-wrote the pseudo-code using a case
statement as can be seen above.

If a string longer than 8 characters were entered into the textbox the displayed value would be
0 as the value exceeds the range of the integer type. Therefore I limited the number of
characters that can be entered into the text box to 8.

When the hexadecimal value were entered in lower case the program would not process the
characters correctly, as the computer makes a distinction between the upper and lower case
letters. Using the AnsiUpperCase() function the string was internally manipulated before
processing to all upper case characters. I also added a validation routine to check that the
characters were valid hexadecimal as the program regarded any invalid character as a 0 entry.

4. Unit listing

Here is the source code copied from Delphi (Automatically generated code omitted):

Gareth Jones (JLB) - Computing (SAH)

//
// Define HexToDec function
//
function HexToDec (Str: string): Integer;
var
i, j, TermPower: Integer;
begin
TermPower:=1;
//

// Calculate highest power of 16 required for given string length
//
for j:=1 to (Length(Str)-1) do begin
TermPower:=TermPower * 16;
end;
Result:=0;
//
// Make string all upper case
//
Str:=UpperCase (Str);
//
// Analyse each character in the string, performing one of three operations
//
for i:=1 to Length(Str) do begin
case Str[i] of

// For numerical values multiply by the appropriate power of 16

'1'..'9': Result:=Result+ (StrToInt (Str[i])) *TermPower;
// For alphabetical values convert to numerical value first then multiply by
// appropriate power of 16

'A'..'F': Result:=Result+ (Ord(Str[i])-55)*TermPower;
// For values that are neither numerical or valid alphabetical characters
// display an error message

else ShowMessage ('Character ' + Str[i] + ' is invalid hexadecimal.');
end;

// At the end of each cycle of the iteration divide the highest power of 16
// necessary for the string by 16. For the last character in the string this
// multiplier will be 1

TermPower:=TermPower div 16;
end;
end;

procedure TfrmMain.txtEntryKeyUp (Sender: TObject; var Key: Word;
Shift: TShiftState);

//

// OnKeyUp in the txtEntry textbox the HexToDec function is executed

//

begin
1blResult.Caption:=IntToStr (HexToDec (txtEntry.Text));
end;
end.
5. Testing
Test Why testing Expected Actual outcome
outcome (T/F)

Individual hex
characters, 0, 1, 2,
3,4,5,6,7,8,9,
A B, C D, E,F.

Check characters
are correctly
converted.

Characters are
converted to
decimal correctly.

As expected - T.

Lowercase
alphabetical
individual
characters, a, b, ¢,

Check lowercase
characters can be
entered.

Lowercase
characters are not
recognised.

As expected - T.

Gareth Jones (JLB) - Computing (SAH)

[d.ef. | | | |

However, this feature would be useful in my program so I searched the Delphi help to find a
function to turn a string into all upper case values. The Delphi help suggested the UpperCase()
function, which I implemented in my program. On re-testing the lowercase values were
accepted by my program.

Test Why testing Expected Actual outcome
outcome (T/F)

Enter invalid Check validation Validation routine As expected, see

characters routine works generates error Figure 1 - T.

correctly that the character

is invalid

hexadecimal
Error message Check error Error message is Error message is
disappears on message is only called once. repeatedly called if
mouse click or called once the message box is
keyboard stroke closed with a

keystroke - F.

Character R is invalid hexadecimal,

Choosing to close the error message with a key press will not work as the program is set to
execute the procedure OnKeyPress when the cursor is in the txtEntry textbox. Therefore when
the key is pressed on the error message the procedure is executed again and so the error
message is displayed again. To solve this problem I could choose to execute the procedure on a
different event, a suitable alternative would be the OnExit event. However this would
compromise the ease of use of the program.

A useful alternative would be to have got the error message to print to the IbIResult label,
however I could not achieve this from inside the procedure, and so have decided to leave this

bug in the program.

Test

Why testing

Expected
outcome

Actual outcome

(T/F)

Check multiplication
of appropriate
powers of 16 is
correct by testing
consecutive values
of numerical values
(*12’), consecutive
alphabetical values
(‘AB’) and then a
mixture (‘B4,’ ‘9E").

Check correct
conversion to base
16. If the test
works for two
consecutive figures
it will work for 3, 4
and so on due to
the logic of the
program.

Correct results are
generated (Tested
using DecToHex
function in
Delphi).

As expected - T. See
Figure 2.

Length of txtEntry

Check limit has

No more than 8

As expected - T.

textbox limited to 8 | been applied characters can be
characters. correctly. entered.
1=

Click. kere far Instructions |

Enter a hexradecimal value into the first text box and
the decimal walue will appear in the second text

b,

Enter hex code here:

Dec code displayed kere: 171

AF|

Figure 2.

Gareth Jones (JLB) - Computing (SAH)

6. Sample run

Here is a screenshot showing a sample run of my program.

s HexToDec program - |EI|£|

Click. here for Instructions |

Enter a hexadecimal value into the first text box and
the decimal value will appear in the zecond text
bow.

Enter hex code here: ABDEC

Dec code displayed here: 703380

7. Appraisal

The program that I have created meets the brief, the function HexToDec successfully converts
an entry in hexadecimal to an output in decimal. To meet the extension; the code is currently
positioned in a place in the unit where it is accessible by all event handlers. To make it visible
only to the current event handler the function must be defined within the procedure, after the
variable declarations (var) and before the beginning of the body of the program (begin).

I extended the brief further by using the UpperCase function which I found using the Delphi
help, by adding an instructions button and memo box and a validation routine.

A known issue with the program is that the error message (“Invalid character...”) must be
clicked with the mouse. Choosing to close the error message with a key press will not work as
the program is set to execute the procedure OnKeyPress when the cursor is in the txtEntry
textbox. Therefore when the key is pressed on the error message the procedure is executed
again and so the error message is displayed again. To cure this error I would need to assign the
event to a different event, OnExit would be a suitable alternative. A better approach would be to
use an ‘if’ statement where if the key pressed was enter then the procedure would not be called.

I found writing the pseudo-code for this task very helpful. I had initially found the task
complicated and had tried a variety of approaches, using arrays for example. Using a string
however allowed for a variable length input and made the code easier.

During the creation of this program I have gained a sound understanding of functions and
improved my approach to tasks.

